Analysis, Control and Synchronization of a Nine-Term 3-D Novel Chaotic System

نویسندگان

  • Sundarapandian Vaidyanathan
  • Ahmad Taher Azar
چکیده

This research work describes a nine-term 3-D novel chaotic system with four quadratic nonlinearities. First, this work describes the dynamic analysis of the novel chaotic system and qualitative properties of the novel chaotic system are derived. The Lyapunov exponents of the nine-term novel chaotic system are obtained as L1 1⁄4 9:45456; L2 1⁄4 0 and L3 1⁄4 30:50532. Since the maximal Lyapunov exponent (MLE) of the novel chaotic system is L1 1⁄4 9:45456, which is a high value, the novel chaotic system exhibits strong chaotic properties. Next, this work describes the adaptive control of the novel chaotic system with unknown system parameters. Also, this work describes the adaptive synchronization of the identical novel chaotic systems with unknown system parameters. The adaptive control and synchronization results are proved using Lyapunov stability theory. MATLAB simulations are given to demonstrate and validate all the main results derived in this work for the nine-term 3-D novel chaotic system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synchronization of Chaotic Fractional-Order Lu-Lu Systems with Active Sliding Mode Control

Synchronization of chaotic and Lu system has been done using the active sliding mode control strategy. Regarding the synchronization task as a control problem, fractional order mathematics is used to express the system and active sliding mode for synchronization. It has been shown that, not only the performance of the proposed method is satisfying with an acceptable level of control signal, but...

متن کامل

Finite Time Mix Synchronization of Delay Fractional-Order Chaotic Systems

Chaos synchronization of coupled fractional order differential equation is receiving increasing attention because of its potential applications in secure communications and control processing. The aim of this paper is synchronization between two identical or different delay fractional-order chaotic systems in finite time. At first, the predictor-corrector method is used to obtain the solutions ...

متن کامل

Chaotic dynamics and synchronization of fractional order PMSM ‎system

‎In this paper, we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor (PMSM) system. The necessary condition for the existence of chaos in the fractional-order PMSM system is deduced and an active controller is developed based on the stability theory for fractional systems. The presented control scheme  is simple and flexible, and it is suitable both fo...

متن کامل

Analysis, Adaptive Control and Synchronization of a Seven-Term Novel 3-D Chaotic System

First, this paper introduces a seven-term novel 3-D chaotic system and discusses its qualitative properties. The proposed system is a seven-term novel polynomial chaotic system with three quadratic nonlinearities. The Lyapunov exponents of the novel chaotic system are obtained as L1 = 3.3226, L2 = 0 and L3 = –30.3406. The maximal Lyapunov exponent (MLE) for the novel chaotic system is obtained ...

متن کامل

Modified Sliding-Mode Control Method for Synchronization a Class of Chaotic Fractional-Order Systems with Application in Encryption

In this study, we propose a secure communication scheme based on the synchronization of two identical fractional-order chaotic systems. The fractional-order derivative is in Caputo sense, and for synchronization, we use a robust sliding-mode control scheme. The designed sliding surface is taken simply due to using special technic for fractional-order systems. Also, unlike most manuscripts, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015